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Optimal reconstruction of attractors from experimental time series by the wavering product
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In this work the dynamics of a periodically excited neon glow discharge is examined by determining a
Lyapunov exponent spectrum from the discharge current. Therefore it is necessary to reconstruct an attractor
with the Takens delay coordinate methid@l Takens, inDynamical Systems and Turbuleneslited by D.

Rand and L.-S. Young, Lecture Notes in Mathematics Vol. 8ringer, Berlin, 1981 p. 364 from the
discharge current topologically correct. For a simultaneous determination of both the embedding dimension
and the delay time the wavering product is used here as an efficient mggi@63-651X97)06405-2

PACS numbe(s): 05.45+b

I. INTRODUCTION presented here is based on the concepts of Eckmaak| 8]
and Sano and Sawaf@l and is improved in some details. In
In complex systems such as plasmas, beside temporal aithis procedure the linearized phase flow mapping is deduced
spatial turbulences there exist nonlinear processes with feffom the temporal evolution of a next-neighbor area around
degrees of freedom. Deterministic chaos in gas dischargéeference points on the attractor and approximated by the
plasmas has been proved in many experiments so far. Ifethod of least squares. After the algorithm has been de-
former researches in the nonlinear dynamics of periodicallyscribed, it is explored on which parameter interval of the
excited neon glow discharges periodicity, two- and threealgorithm the LES of a Lorenz system converges and the
frequency quasiperiodicity and low-dimensional chaos couldalculated LES is compared with literature data. In this way
be observed1]. A differentiation of the observed three- We find out how to limit the parameter space in order to get
frequency attractors into quasiperiodicity and chaos was po$ptimal results from the algorithm. Then the tested algorithm
sible by determining the autocorrelation function, tagen-  is applied to experimental time series, which have been ob-
tropy, and the correlation dimension from the experimentatained by sampling the discharge current of a periodically
time series. In many experiments certainly the chaos is exexcited neon glow discharge. Periodic and chaotic attractors
tremely weak, so that a distinction between chaos and thre@s Well as three tori can be identified definitely with this
frequency quasiperiodicity is often difficult, as Linsay and algorithm for a noise level less than 2%. The results obtained
Cumming observef2,3]. By determining a Lyapunov expo- are confirmed by a comparison with other methods of time-
nent spectrumLES) from the corresponding experimental series analysis such as Poincaetion, Fourier spectrum,
time series it is possible to distinguish between periodicand autocorrelation function.
guasiperiodic, and chaotic attractors reliably. Besides, the
strength of the chaos could be quantified by the LES because  Il. RECONSTRUCTION OF THE ATTRACTOR
the Lyapunov exponents represent a measure for the average
exponential divergence or convergence of two neighborin% X . ) ) X )
trajectories. In addition, the Kolmogorov-Sinaj entrofa] eriment is optamed as a time series. Then a trajectory
and the Kaplan-Yorke dimensidis] could easily be calcu- through amm-dimensional phase space is reconstructed from
lated from the LES. Therefore, statements of the transpof{!iS time series. The dimension of the phase space is deter-
properties of systems can be made as y&ll The LES and mlned by the numper of degrees of freedom of an L_mknown
other attractor properties depend strongly from the choice gponlinear dlfferentlall equation system “that describes the
the phase-space reconstruction. Therefore, it is decisive ®/1ase-space dynamicéThe expression “degrees of free-
find suitable reconstruction parameters. In a former work th&©M.” which is often used as follows, means the degrees of
smallest topologically correct embedding dimension of thd€&dom of the phace space and not the degrees of freedom
attractor was determined by the false nearest-neighbdyf motion of the many-particle system plasinaccording to
method[7]. Another method for testing the topological prop- the concept of delay time coordinates that was proposed by
erties of the attractor represents the wavering product. It delakeng[10], the data;=x(iAt), i=0, ... N—1, sampled
termines the smallest possible embedding dimension and af!ith equidistant time stepat are reconstructed into phase-
lows the choice of a convenient delay time additionally. TheSPace vectors as
wavering product was tested for driven nonlinear systems R
successfully in this work. For nearly-noise-free time series, Xi= (X X4 m:Xit2my - - - Xi+(dg— 1ym)-
good results were obtained with the wavering product. Fur-
thermore, the precision of the calculated LES is dependerithe reconstruction is valid for an embedding dimension
on the details of the applied algorithm and the values of itdd>2D,+1 and in the case of infinite data poinis— o
input parameters. Moreover, there is the difficulty that manyeven for arbitrary delay times=mAt [11]. D, is the capac-
algorithms depend sensitively on noise in experimental timéty dimension of the attractor. This is a sufficient condition.
series. The algorithm for determining a LES from time seriesThere exist possibly lower embedding dimensions. In the

In most cases only one characteristic quantity of the ex-
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_FIG. 1. Wavering prodqct of 'the Van der _Pol system without  FIG. 3. Wavering product of a stochastic third order-
noise versus delay time. Dimensions are varying from 2 to 5. autoregressive process. Dimensions are varying from 2 to 9.

case of time series with a finite number of data there is n%r two-dimensional systems. Yet for higher-dimensional

arbitrary choice of the delay time possible because the prop- . > .
1 - systems the correlation of the other coordinates is not taken
erties of the reconstructed attractor depend sensitively.on

into account. Another method to obtain convenient delay
Therefore, procedures have to be found to allow both the. ) . .
: : . . . ._Times is to calculate the correlation dimensBp and search
choice of a suitable embedding dimension and a convemeqkJr a region that remains constant at a variance: fif4]
delay time. Yet it makes sense to choakeas small as 9 ‘

ossible because, on the one hand, it reduces the computin Other methods have been developed to find a minimal
b ' ' P egnbedding. In the opinion of Froehlireg al.[15] the small-

time for analyses of the reconstructed attractor such as cor-_, . . ) ; - .
st integer dimension above the fractal dimension is suffi-

relation dimension and LES and, on the other hand, the I‘Egient as the embedding dimension for physical systems. That
will not be falsified by the determination of false Lyapunov 9 phy y '

corresponds just to very simply structured attractors. The

g\);g?;;irx]sétevéhlggeag%i% if the embedding  dimension ISsingle-valued system approach as stated by Broomhead and

The ange o sutable ceay tmes can be reduced on 0015 SETIneS e vl ambedino by o shgtler
time interval 0<7<<0.5T.. T, is the characteristic recur- P J Y '

rence time of the system. In the first instanceeed not be linear procedure, only statements about the linear indepen-

so small that the attractor is nearly reduced on the hyperdidence of the coordinates can be made. Another procedure is

agonal of the phase space. However, a delay tiniE, to find the number of initial conditions for a definite recon-
would lead to an overfolding of the attractor. But there still struction of the attractdi7]. Buzug and Pfister18] use two

exist bad reconstructions of some attractors even within thicomplementary methods to determine both the embedding
. ) . dimension and the delay time. The fill factor algorithm pre-
range ofr. To further restrict this range of convenient delay

; . - ~7 sents a measure for the global use of the phase space by the
times there exist several methods. An early method to find gy 5 oor The second method, which is called local deforma-

suitable delay tim.e is basgd on the cor_relation of coordin:_;\teﬁon’ allows one to recognize intersections in the attractors
[13]. As a delay tlmg the time mte.rval is used here at Wh'Chtrajectories. Another work that concerns with the determina-
a correlation of the first two coordinates does not occur anYsion of LES from time series that are obtained from the dis-

more. That means thatis the time at which the autocorre- charge current of an undriven argon discharge plaktSa

lation function first becomes zero. This procedure works We”applies the false next-neighbor methg. This procedure
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FIG. 2. Wavering product of the Van der Pol system with 2%
Gaussian noise versus delay time. Dimensions are varying from 2to FIG. 4. Lyapunov exponent spectrum versus the time range for
6. the linear approximation of the flow map for the Lorenz system.
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FIG. 5. Lyapunov exponent spectrum versus the number of data

. ) FIG. 7. Lyapunov exponent spectrum versus the number of next
points that the attractor contains.

neighbors.

looks into the topological changes of an area on the attractor 17 1G,j(k,m))
when the embedding dimension is increased. Since this Qq(i,k,m,7)= G (kme1)
method does not determine the delay time, the time when the m+1( 1 (K,

autocorrelation function of the time series has sloped ¢ 1/,, . . . . .
is taken as the delay ti MAL. I7.1@,j(k,m)) is the distance between the reference point

. i and itskth next neighbor of embedding when embedded
Contrary to these methods that require usually two proce: dimensionm+1. 17 ,(,j(k.m+1)) is the distance be-

dures to obtain embedding dimension and delay time, botf]’ he ref inand itskih iahbor of
parameters can simultaneously be determined by the wavef/€€n the reference pointand itskth next neighbor of em-

ing product. The wavering product was developed by LieberP€ddingm+1 when embedded in dimensiom+ 1. This ex-
[20] and is described in the following section. pression is of value 1 if th&th next neighbor of point is
represented by the same point in both dimensions. If the

embedding is not sufficient and the neighboring point is
A. Wavering product placed at a region on the attractor far away from the refer-
. . ) ) o ence point while incrementing the embedding dimension, the
A transition from a sufficient embedding dimension into aexpression becomes much larger than one. If the wavering
higher dimension can be regarded as a topological mappingyoquct remains one for all higher embedding dimensions,
The wavering product makes good use of this. A topologicahe embedding is correct. Because the trajectory intersects
mapping transforms an enclosed region into another enclosgghih jtself just at few positions on the attractor, the average
region. That means that the neighboring points of a referencgyer the attractor has to be taken.
point on a sufficient embedded attractor keep preserved if the. Another problem arises from the fact that a reconstruction
embedding dimension increases, whereas in a not sufficiefit the delay coordinates method does not preserve the or-
embedded attractor the distance between neighboring poinf&, of next neighbors around a reference point if the embed-

and reference point may become very large if the dimensioging dimension is increased. A geometrical average is taken
is increased. Then the reconstructed attractor is only a prqg, compensate this wavering effect:

jection of the real attractor onto a subspace and the trajectory

intersects with itself at least once. These contents can be p 1p
expressed in the formula P(mn=|[] Qiikm7)| .
k=1
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FIG. 6. Lyapunov exponent spectrum versus the number of ref-
erence points. FIG. 8. Lyapunov exponent spectrum versus the sampling time.
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TABLE |. Theoretical and calculated properties observed from

10
the Lorenz attractor.
)\1 )\2 )\3 K2 DKY 0+ ::z::: g g g . o

Theoretical ~ 1.50 0.00 —2246 150 2.06 —
Calculated 1.430.15 —0.27+0.25 —16.91+0.48 1.43 2.06 £, 10 | A‘

. 3 - 20 | g - g gl
The wavering effect can be amplified by noise. Therefore, e
the numberp of next neighbors has to exceed at least the :
noise level. Because of border effects the improved wavering -30 : : : 4

0.000 0.003 0.006 0.009 0.012

product still does not converge near enough to one. This
influence of border effects can be compensated by an addi-
tional term

% Gauss noise

FIG. 9. Lyapunov exponent spectrum versus the Gaussian noise
T that is imposed on the time series.
_ |5 (k,m)) P
Q2(|,k,m,7'):|7, . . k _1 .
m(i,j(k,m+1)) wavering product was averaged over 40 next neighbors. Ob-
viously W converges against embedding dimensiba 3

The wavering product then becomes ; )
over a wide range of delay times

p 1p Figure 2 shows the wavering product for the same system
wim,7)=| [] Qi(i,k,m,7)Qy(i,k,m,7)| . with 2% Gaussian noise added. In this case convergence is
k=1 more indistinct than in the case of the noiseless system. But

) ) there is still a great gap betweér=2 andd=3. From that
As stated above, the wavering product is averaged over th@e conclusion can be made that additional noise in time

attractor. An average over 5—10% of the data points provederies lets the wavering product converge to higher embed-
sensible. In the case of sufficient embedding there exists ging dimensions above the minimal embedding. Therefore,
7 dependence, which is compensated by the facterTiie  npgjse in time series should be reduced before an analysis

logarithmic wavering product converges against zero: with the wavering product.
1 Furthermore, the question should be answered if the wa-
W(m, 7)== In(w;(m, 7)); . vering product can dis_tinggish between stationary rangom
T processes and deterministic processes because Fredkin and

Rice obtained a random second-order autoregressive process
B. Test of the wavering product on driven systems beeing estimated as deterministic by the false nearest-
. . . L ) . neighbor method22]. In order to determine if the wavering
Since the analysis of time series is focused on driven disg o quct suffers from the same problem a third-order autore-

charges, it is reasonable to test the wavering product algQs assive process was generated, satisfying the equation
rithm for a driven nonlinear test system. The Van der Pol

equation was established recently for modeling the dynamics
of a driven low-pressure glow discharfi#l]. So this system

seemed to be suitable for a test of the wavering product. The
following parameter values were selected, which determine @ith a white-noise sequenagt). Figure 3 shows the con-

X(1)=1.5%(t—1)—1.2&(t—2)+0.6x(t—3) + u(t),

chaotic regime of the Van der Pol system: vergence of the wavering product for this process. Because
5 the computing time grows rapidly with the embedding di-
J J mension, the wavering product was restricted to maximum

—X(0) = pag[1=X(1)*]2x(1) + wox(t) = peog 1),

d dimensiond=9 here. However, the wavering product seems
to converge regularly against zero for high embedding di-
u=5, woe=1, w;=2.465, p=5. mensions, as one would expect, since a stochastic process is
infinite dimensional in phase space. Obviously the wavering
Figure 1 shows the wavering product of the selected systenproduct is not “fooled” by a stationary random process of

The underlying time series consists of 40000 points and théhat smoothness contrary to the method of nearest neighbors.

TABLE Il. Experimental parameters and discovered dimensions for all the observed regimEsigns
the external drive frequency, is the pressure in the discharge tubgjs the direct current portion of the
discharge current, and represents the modulation amplitude.

Dynamic regime v (kHz) po (torr) Iy (MA) a D, Dky
Periodic 3.113 17 10.0 0.05 0.99.05
Quasiperiodic 4.063 1.7 10.0 0.04 3:08.05

Chaotic 5.020 1.7 15.0 0.05 3.60.05 5.56
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FIG. 10. Poincaresection through the periodic attractor. FIG. 12. Poincaresection through the chaotic attractor.
. THE LYAPUNOV EXPONENT SPECTRUM an e sphere around?i can be given. Thus only the next

. . .._heighbors within thee sphere are taken into account. The
A Lyapunov exponent spectrum is an important q“am'tytangent mapping’ is approximated into a matrix"™ by the

to classify gnd qua}ntify dynamjcal sys'gem;. The deCiSio.r}nethod of least squard9]. m assigns the number of time
whether a time series is periodic, quasiperiodic, or Chao“%teps for the linear mapping. Applying the mappmgmes

can be made by calculating a Lyapunov exponent spectrurgn a coordinate base results in a product maﬂ]Z?Aj’m-

because it is characteristic for special dynamical state his sequence of linear manpinas allows the coordinate axes
Lyapunov exponents state how the phase flow mappinao convgr e into the directio%pofgthe biggest Lyapunov expo-
transforms an infinitesima¢ sphere on the attractor into an 9 . 99 yapL P
. . . nent enforced by the dynamics of the system. It is therefore
ellipse in the average of time: . .
necessary to reorthonormalize the coordinate base. Sano and
1 rt Sawada propose a Gram-Schmid reorthonormalization pro-
A= "m_f Iny,dt. cedure[23]. The algorithm used here decomposes the matrix
P Al'™into an orthogonal and an upper triangular matrix with
positive diagonal elemen{8,24] as
The vy, are the eigenvalues of the linearized phase flow map-

pmg Al,mi: Ql,le,m’

A. Algorithm for the calculation of Lyapunov exponents AZ’mAlvmi: QZ’mRZ’leym'
The algorithm to calculate Lyapunov exponents presented
here corresponds in its essential features to the method de-
veloped by Sano and Sawaf@]. Moreover, the local tan-
gent mappingd" at positioni of the phase flow are approxi- P L
mated by the method of least squares. This happens in the ,Hl A"mZQp’ijl R
following manner. For a reference poii]tthen next neigh-
bors on the attractor are determined with respect to the EtHence the tangent mappig'™ is represented by an ortho-
clidian distance. To prevent the next-neighbor area from exnormal system that is rotated ky ~*™ against the canonical
panding so much that a linear approximation is not possibl@oordinate base &t the beginning of the sequence. Because
this orthonormal system nearly corresponds to the principal
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FIG. 11. Poincaresection through the three-frequency quasip-
eriodic attractor. FIG. 13. Autocorrelation function of the periodic attractor.
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FIG. 14. Autocorrelation function of the quasiperiodic attractor. FIG. 16. Power spectrum of the periodic attractor.

axes system of the tangent mappifig™, the Lyapunov ex- Wwhereas for the determination of positive Lyapunov expo-
ponents can be calculated from the diagonal elements of theents attractors with many orbits are requifed least 100
upper triangular matrix with good approximation: orbit). To fulfill both requirements large amounts of data are

needed. The used time series usually contained of 80 000
P ‘ data and had a precision of 12 bits.
=—— > In(R'™);. The input parameters of the above described algorithm

pmAt =1 . o . .
will now be optimized and then the algorithm will be tested

g a Lorenz system. The algorithm contains many param-

A

The procedure described above begins at several random . .

partitioned positions on the attractor to include each part o ers. The parameter space has to be red.uced in a sensible
the attractor and to guarantee a good spatial average of t anner so that the glgorlthm delivers o_pt|mal results. For

Lyapunov exponents. The firgttangent mappings were not t Ea;purpoge an are? 'rl p_?_Lameter spatce '3 sele(cjted whefretghe
taken into account for the calculations because the arbitragyﬁES .renLams ﬁons fan . L € paramte er dependence of the
base at the start of the procedure takes some time to train IS shown here for a Lorenz system,
the principal axes system. During this time the algorithm X=o(y—x)
would deliver inaccurate results. '

B. Optimization and test of the algorithm y=CX—y—Xz,
The reconstructed attractﬁr represents the phase flow of

a dynamical system in discrete time steps. It depends on the

choice of the reconstruction parameters embedding dimen- )

siond, and delay timer whether the attractor approximates With o=16,b=4.0, andR=45.92(Figs. 4-9. Constant pa-

the system well. In addition, the density and the amount ofameters were set as follows: evolution tim¢g,=0.008,

information that the reconstructed attractor contains aboufUmber of pointsN==80 000, step widtidt=0.002 (which

the phase flow are given by the sampling rate, the precisiorforresponds to about 250 points per dshitumber of refer-

and the total amount of data of the obtained time series. IBNC€ POINtSN¢=3500, and number of next neighbors

was found that time series with high sampling frequencied)=160.N has to be proportional ta whenN is varied to

were needed for a reliable determination of negativekeep the radius of the next-neighbor sphere around a refer-

Lyapunov exponentsat least 100 points per orpi{25],  €nce point nearly constant.

z=—bz+xy,

15 1500
1.0
0.5 5 A 1000 |
L i
2 0.0 |+ : E
-0.5 500 |
1.0
-15 . . . 0 - - :
0 5 10 15 20 0 2000 4000 6000 8000
At (ms) v (Hz)

FIG. 15. Autocorrelation function of the chaotic attractor. FIG. 17. Power spectrum of the quasiperiodic attractor.
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FIG. 18. Power spectrum of the chaotic attractor. FIG. 20. Lyapunov exponent spectrum for the quasiperiodic sys-

tem.

Convergence could be achieved for all varied parameters.
Figure 4 shows a convergence of the LES for evolution timedvithin the error bars, with exception of the negative one.
Ate,<0.01 s, corresponding to 50 points per orbit. HenceSince||\ _|| is huge againsk ., the next neighbors contract
step widths less than 0.01 s must be taken. For experimemuch faster in the\ _ direction as they expand in the,
tally obtained time series the step width is given by the in-direction. If a part of the next neighbors contracts in the
verse sampling frequenayt=»~ 1. Because of a better sta- M- direction under the noise level or goes down under the
tistics the LES converges for large valuesMf N,o;, and  data precisioni _ will be systematically overestimated. The
n, as Figs. 5-7 show. But may not become too large; LES converges on different regions in parameter space for
otherwise, thee sphere exceeds the range for a linear ap£ach system. These regions have to be found for each system

proximation of theE map. The influence of the step width on Individually.

the LES can be neglected if only step widths within the

convergent range of the evolution time are considdFed. IV. ANALYSIS OF EXPERIMENTAL TIME SERIES

8). Against that there is a strong dependence of the LES on

the noise level, as demonstrated in Fig. 9. There is Gaussian Time series that were obtained by sampling the discharge
noise superimposed on the Lorenz attractor. The noise levéMrrent of a neon glow discharge with a 500-kHz sampling
relative to the horizontal extent of the attractor is displayedrequency were analyzed. The experimental setup is de-
on the abscissa of Fig. 9. As can be recognized from Fig. gscribed in detail if27]. Various dynamical regimes can be
the algorithm delivers reasonable results until the noise leve§€t there by varying the frequency that drives the discharge.
gets across 2%. Hence the noise in the experimental tim&he following analysis refers to a periodic, a quasiperiodic,
series has to be reduced at least under this level. Furth@nd a chaotic time series, which were sampled at experimen-

investigations on the influence of interactive noise to thetal conditions, as given in Table II.

LES are made if26]. As a first step the noise contained in the time series had to
The Lyapunov exponents of the Lorenz system that ard®e reduced. This could be realized by a method that interpo-

calculated in the convergent range of all parameters are confates a time series through cubic splines and then averages

pared with published daf@5] in Table I. Error bars refer to over them. This procedure is applied[i0] as well. Then a

the fluctuations of the Lyapunov exponents within the con-Poincaresection, a Fourier spectrum, and an autocorrelation

vergence region. It is shown that the calculated Lyapunoyunction were derived from the low-noise time series to clas-

exponents are in good agreement with the theoretical valuesify their dynamicgFigs. 10-18 Moreover, by the calcula-

20

20 /
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-30 : - : -30 . . .
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
evolv (mS ) evolv (mS )

FIG. 19. Lyapunov exponent spectrum for the periodic system. FIG. 21. Lyapunov exponent spectrum for the chaotic system.
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FIG. 22. Wavering product for the periodic system. FIG. 24. Wavering product for the chaotic system.

tion of the correlation dimensio®,, which can easily be convergence is situated above zero. As demonstrated in Sec.
done with the Grassberger-Procaccia algoritf2@] (delay 11 B, the insufficient convergence is related to a remaining
time=1/3T, Table Il), dynamical regimes of the time series part of noise contained in the time series that could not be
can now be determined. Hence the first time series correreduced further. This noise can be seen in the Fourier spec-
sponds to a one-period, the second time series correspondsttam of the chaotic time series as wéfflig. 18. On the other
a three-torugquasiperiodig, and the third is chaotic. This hand, the application of the noise reduction algorithm impli-
could be verified with a LES, which was obtained by apply-cates the risk of deforming chaotic trajectories and therefore
ing the above-described algorithm onto the time series.  alters the dynamics of the system essentially, as stated in
Figures 19-21 show the LES against the evolution time[19]. Thus a noise level less than 2% was tolerated so that
The LES for the three time series is represented schematieliable Lyapunov exponents could be determined. Because
cally as (0,—,-,—), (0,0,0~,-) and (+,+,0,—,—,—) of the insufficient convergence of the wavering product, the
within the error bars, corresponding to a periodic, a quasichaotic attractor that is reconstructed with parameters
periodic and a chaotic state. This scheme refers to the comt,.=6 and r=0.062 ms is possibly embedded too high.
vergence region of the LES for evolution times Hence the LES would contaird,—d, additional false
Ate,o<1072 ms. The errors of the LES are estimated by theLyapunov exponents besides true Lyapunov exponents.
fluctuations of the convergence niveaus. The innermosd, represents the real embedding dimension of the attractor
Lyapunov exponents even converge umil,,,=0.04 ms. corresponding to the system’s number of degrees of freedom.
For a more precise determination of the Lyapunov exponent§ an embedding dimensiod.=4 is considered to be as
smaller evolution times are needed. This would requiresufficient for the chaotic system and the second and fourth
higher sampling rates, which could not be realized experityapunov exponent is deleted from the LES, the Lyapunov
mentally. dimension is equivalent to the correlation dimension within
In Figs. 22—-24 the wavering products for the three timethe error bars.
series are shown. They depend on the parameters delay time
7 and embedding dimension of the attractlyr. In the case V. CONCLUSION
of the periodic and the quasiperiodic system convergence
against zero can clearly be recognized since the embedding An algorithm for the calculation of LES from time series
dimensiond=4 andd=5. The corresponding delay times has been presented that allows for the determination of nega-
were set tor=0.082 ms and=0.074 ms. Yet in the case of tive Lyapunov exponents. The algorithm has been tested on a
the chaotic system the convergence is more indistinct and thieorenz system and has been optimized with respect to its
parameters. For sensible parameter settings good agreement

0.007 could be achieved between the results of the algorithm and
e literature values of the model system. Then with the algo-

oo d=d rithm a LES has been found from the discrete discharge cur-

0005 | 7Y P o rent of a periodically excited neon glow discharge. There-

; fore, an attractor had to be reconstructed from the
' : experimental time series with its reconstruction parameter’s
embedding dimension and delay time determined by the wa-
vering product. Chaotic, periodic, and three-frequency qua-

0.003  /

W(d, t)

0.001 4 . B siperiodic time behavior has been proved to be dependent on
! e e es e, the external drive frequency. These results could be con-
firmed by further analyses with the Poincasection, the
-0.00, : : ' Fourier s h lation di i dth -
0.00 0.05 0.10 0.15 0.20 pectrum, the correlation dimension, and the autocor
T (ms) relation function. Because of the sensitivity of the LES algo-

rithm and especially the wavering product to noise, the noise
FIG. 23. Wavering product for the quasiperiodic system. level of the time series under analysis had to be reduced. In
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the case of the chaotic time series the noise level could onlglgorithm presented in this work provides an efficient
be reduced down to 2% because by a further noise reductiaomethod to classify and quantify dynamical systems from ex-
with the mentioned algorithm a change of the dynamic propperimental time series.

erties of the attractor seemed to be very likely. Though a

noise !evel of 2% was not prqblematic for the LES algo- ACKNOWLEDGMENTS

rithm, it probably let the wavering product overestimate the

embedding dimension, as was assumed by a comparison be-We thank Stephan Gubsch,rdoSchmekel, and Klaus-
tween the Lyapunov dimension and correlation dimensionDieter Weltmann for experimental support and helpful dis-
Together with a good noise reduction procedure, the LESussions.
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