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Optimal reconstruction of attractors from experimental time series by the wavering product

W.-D. Sponheimer and C. Wilke
Department of Physics, Ernst-Moritz-Arndt University, Domstrasse 10a, D-17489 Greifswald, Germany

~Received 29 August 1996!

In this work the dynamics of a periodically excited neon glow discharge is examined by determining a
Lyapunov exponent spectrum from the discharge current. Therefore it is necessary to reconstruct an attractor
with the Takens delay coordinate method@F. Takens, inDynamical Systems and Turbulence, edited by D.
Rand and L.-S. Young, Lecture Notes in Mathematics Vol. 898~Springer, Berlin, 1981!, p. 366# from the
discharge current topologically correct. For a simultaneous determination of both the embedding dimension
and the delay time the wavering product is used here as an efficient method.@S1063-651X~97!06405-2#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

In complex systems such as plasmas, beside tempora
spatial turbulences there exist nonlinear processes with
degrees of freedom. Deterministic chaos in gas discha
plasmas has been proved in many experiments so far
former researches in the nonlinear dynamics of periodic
excited neon glow discharges periodicity, two- and thr
frequency quasiperiodicity and low-dimensional chaos co
be observed@1#. A differentiation of the observed three
frequency attractors into quasiperiodicity and chaos was p
sible by determining the autocorrelation function, theK2 en-
tropy, and the correlation dimension from the experimen
time series. In many experiments certainly the chaos is
tremely weak, so that a distinction between chaos and th
frequency quasiperiodicity is often difficult, as Linsay a
Cumming observed@2,3#. By determining a Lyapunov expo
nent spectrum~LES! from the corresponding experiment
time series it is possible to distinguish between period
quasiperiodic, and chaotic attractors reliably. Besides,
strength of the chaos could be quantified by the LES beca
the Lyapunov exponents represent a measure for the ave
exponential divergence or convergence of two neighbor
trajectories. In addition, the Kolmogorov-Sinaj entropy@4#
and the Kaplan-Yorke dimension@5# could easily be calcu-
lated from the LES. Therefore, statements of the trans
properties of systems can be made as well@6#. The LES and
other attractor properties depend strongly from the choice
the phase-space reconstruction. Therefore, it is decisiv
find suitable reconstruction parameters. In a former work
smallest topologically correct embedding dimension of
attractor was determined by the false nearest-neigh
method@7#. Another method for testing the topological pro
erties of the attractor represents the wavering product. It
termines the smallest possible embedding dimension an
lows the choice of a convenient delay time additionally. T
wavering product was tested for driven nonlinear syste
successfully in this work. For nearly-noise-free time seri
good results were obtained with the wavering product. F
thermore, the precision of the calculated LES is depend
on the details of the applied algorithm and the values of
input parameters. Moreover, there is the difficulty that ma
algorithms depend sensitively on noise in experimental t
series. The algorithm for determining a LES from time ser
551063-651X/97/55~6!/6467~9!/$10.00
nd
w
ge
In
ly
-
d

s-

l
x-
e-

,
e
se
ge
g

rt

of
to
e
e
or

e-
al-
e
s
,
r-
nt
s
y
e
s

presented here is based on the concepts of Eckmannet al. @8#
and Sano and Sawada@9# and is improved in some details. I
this procedure the linearized phase flow mapping is dedu
from the temporal evolution of a next-neighbor area arou
reference points on the attractor and approximated by
method of least squares. After the algorithm has been
scribed, it is explored on which parameter interval of t
algorithm the LES of a Lorenz system converges and
calculated LES is compared with literature data. In this w
we find out how to limit the parameter space in order to
optimal results from the algorithm. Then the tested algorit
is applied to experimental time series, which have been
tained by sampling the discharge current of a periodica
excited neon glow discharge. Periodic and chaotic attrac
as well as three tori can be identified definitely with th
algorithm for a noise level less than 2%. The results obtai
are confirmed by a comparison with other methods of tim
series analysis such as Poincare´ section, Fourier spectrum
and autocorrelation function.

II. RECONSTRUCTION OF THE ATTRACTOR

In most cases only one characteristic quantity of the
periment is obtained as a time series. Then a trajec
through anm-dimensional phase space is reconstructed fr
this time series. The dimension of the phase space is de
mined by the number of degrees of freedom of an unkno
nonlinear differential equation system that describes
phase-space dynamics.~The expression ‘‘degrees of free
dom,’’ which is often used as follows, means the degrees
freedom of the phace space and not the degrees of free
of motion of the many-particle system plasma.! According to
the concept of delay time coordinates that was proposed
Takens@10#, the dataxi5x( iDt), i50, . . . ,N21, sampled
with equidistant time stepsDt are reconstructed into phase
space vectors as

xW i5~xi ,xi1m ,xi12m , . . . ,xi1~de21!m!.

The reconstruction is valid for an embedding dimens
de.2Dk11 and in the case of infinite data pointsN→`
even for arbitrary delay timest5mDt @11#. Dk is the capac-
ity dimension of the attractor. This is a sufficient conditio
There exist possibly lower embedding dimensions. In
6467 © 1997 The American Physical Society
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6468 55W.-D. SPONHEIMER AND C. WILKE
case of time series with a finite number of data there is
arbitrary choice of the delay time possible because the p
erties of the reconstructed attractor depend sensitively ot.
Therefore, procedures have to be found to allow both
choice of a suitable embedding dimension and a conven
delay time. Yet it makes sense to choosede as small as
possible because, on the one hand, it reduces the comp
time for analyses of the reconstructed attractor such as
relation dimension and LES and, on the other hand, the L
will not be falsified by the determination of false Lyapuno
exponents, which appear if the embedding dimension
overestimated; see, e.g.,@12#.

The range of suitable delay times can be reduced on
time interval 0,t,0.5Tc . Tc is the characteristic recur
rence time of the system. In the first instancet need not be
so small that the attractor is nearly reduced on the hype
agonal of the phase space. However, a delay time.Tc
would lead to an overfolding of the attractor. But there s
exist bad reconstructions of some attractors even within
range oft. To further restrict this range of convenient del
times there exist several methods. An early method to fin
suitable delay time is based on the correlation of coordina
@13#. As a delay time the time interval is used here at wh
a correlation of the first two coordinates does not occur a
more. That means thatt is the time at which the autocorre
lation function first becomes zero. This procedure works w

FIG. 1. Wavering product of the Van der Pol system witho
noise versus delay time. Dimensions are varying from 2 to 5.

FIG. 2. Wavering product of the Van der Pol system with 2
Gaussian noise versus delay time. Dimensions are varying from
6.
o
p-

e
nt

ing
r-
S

is

e

i-

l
is

a
s
h
-

ll

for two-dimensional systems. Yet for higher-dimension
systems the correlation of the other coordinates is not ta
into account. Another method to obtain convenient de
times is to calculate the correlation dimensionD2 and search
for a region that remains constant at a variance oft @14#.

Other methods have been developed to find a minim
embedding. In the opinion of Froehlinget al. @15# the small-
est integer dimension above the fractal dimension is su
cient as the embedding dimension for physical systems. T
corresponds just to very simply structured attractors. T
single-valued system approach as stated by Broomhead
King @16# determines the minimal embedding by a singul
valued decomposition of the trajectory matrix. Because it
linear procedure, only statements about the linear indep
dence of the coordinates can be made. Another procedu
to find the number of initial conditions for a definite reco
struction of the attractor@17#. Buzug and Pfister@18# use two
complementary methods to determine both the embedd
dimension and the delay time. The fill factor algorithm pr
sents a measure for the global use of the phase space b
attractor. The second method, which is called local deform
tion, allows one to recognize intersections in the attract
trajectories. Another work that concerns with the determi
tion of LES from time series that are obtained from the d
charge current of an undriven argon discharge plasma@19#
applies the false next-neighbor method@7#. This procedure

t

to

FIG. 3. Wavering product of a stochastic third orde
autoregressive process. Dimensions are varying from 2 to 9.

FIG. 4. Lyapunov exponent spectrum versus the time range
the linear approximation of the flow map for the Lorenz system
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55 6469OPTIMAL RECONSTRUCTION OF ATTRACTORS FROM . . .
looks into the topological changes of an area on the attra
when the embedding dimension is increased. Since
method does not determine the delay time, the time when
autocorrelation function of the time series has sloped toe
is taken as the delay timet5mDt.

Contrary to these methods that require usually two pro
dures to obtain embedding dimension and delay time, b
parameters can simultaneously be determined by the wa
ing product. The wavering product was developed by Lieb
@20# and is described in the following section.

A. Wavering product

A transition from a sufficient embedding dimension into
higher dimension can be regarded as a topological mapp
The wavering product makes good use of this. A topologi
mapping transforms an enclosed region into another enclo
region. That means that the neighboring points of a refere
point on a sufficient embedded attractor keep preserved if
embedding dimension increases, whereas in a not suffic
embedded attractor the distance between neighboring p
and reference point may become very large if the dimens
is increased. Then the reconstructed attractor is only a
jection of the real attractor onto a subspace and the trajec
intersects with itself at least once. These contents can
expressed in the formula

FIG. 5. Lyapunov exponent spectrum versus the number of
points that the attractor contains.

FIG. 6. Lyapunov exponent spectrum versus the number of
erence points.
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Q1~ i ,k,m,t!5
l m11
t

„i , j ~k,m!…

l m11
t

„i , j ~k,m11!…
.

l m11
t

„i , j (k,m)… is the distance between the reference po
i and itskth next neighbor of embeddingm when embedded
in dimensionm11. l m11

t
„i , j (k,m11)… is the distance be-

tween the reference pointi and itskth next neighbor of em-
beddingm11 when embedded in dimensionm11. This ex-
pression is of value 1 if thekth next neighbor of pointi is
represented by the same point in both dimensions. If
embedding is not sufficient and the neighboring point
placed at a region on the attractor far away from the re
ence point while incrementing the embedding dimension,
expression becomes much larger than one. If the wave
product remains one for all higher embedding dimensio
the embedding is correct. Because the trajectory inters
with itself just at few positions on the attractor, the avera
over the attractor has to be taken.

Another problem arises from the fact that a reconstruct
with the delay coordinates method does not preserve the
der of next neighbors around a reference point if the emb
ding dimension is increased. A geometrical average is ta
to compensate this wavering effect:

Pi~m,t!5S )
k51

p

Q1~ i ,k,m,t!D 1/p.

ta

f-

FIG. 7. Lyapunov exponent spectrum versus the number of n
neighbors.

FIG. 8. Lyapunov exponent spectrum versus the sampling ti
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6470 55W.-D. SPONHEIMER AND C. WILKE
The wavering effect can be amplified by noise. Therefo
the numberp of next neighbors has to exceed at least
noise level. Because of border effects the improved wave
product still does not converge near enough to one. T
influence of border effects can be compensated by an a
tional term

Q2~ i ,k,m,t!5
l m
t
„i , j ~k,m!…

l m
t
„i , j ~k,m11!…

.

The wavering product then becomes

wi~m,t!5S )
k51

p

Q1~ i ,k,m,t!Q2~ i ,k,m,t!D 1/p.
As stated above, the wavering product is averaged over
attractor. An average over 5–10% of the data points pro
sensible. In the case of sufficient embedding there exis
t dependence, which is compensated by the factor 1/t. The
logarithmic wavering product converges against zero:

W~m,t!5
1

t
ln^wi~m,t!& i .

B. Test of the wavering product on driven systems

Since the analysis of time series is focused on driven
charges, it is reasonable to test the wavering product a
rithm for a driven nonlinear test system. The Van der P
equation was established recently for modeling the dynam
of a driven low-pressure glow discharge@21#. So this system
seemed to be suitable for a test of the wavering product.
following parameter values were selected, which determin
chaotic regime of the Van der Pol system:

]2

]t2
x~ t !2mv0@12x~ t !2#

]

]t
x~ t !1v0

2x~ t !5pcos~v1t !,

m55, v051, v152.465, p55.

Figure 1 shows the wavering product of the selected syst
The underlying time series consists of 40000 points and

TABLE I. Theoretical and calculated properties observed fr
the Lorenz attractor.

l1 l2 l3 K2 DKY

Theoretical 1.50 0.00 222.46 1.50 2.06
Calculated 1.4360.15 20.2760.25 216.9160.48 1.43 2.06
,
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wavering product was averaged over 40 next neighbors.
viously W converges against embedding dimensiond53
over a wide range of delay timest.

Figure 2 shows the wavering product for the same sys
with 2% Gaussian noise added. In this case convergenc
more indistinct than in the case of the noiseless system.
there is still a great gap betweend52 andd53. From that
the conclusion can be made that additional noise in ti
series lets the wavering product converge to higher emb
ding dimensions above the minimal embedding. Therefo
noise in time series should be reduced before an ana
with the wavering product.

Furthermore, the question should be answered if the
vering product can distinguish between stationary rand
processes and deterministic processes because Fredkin
Rice obtained a random second-order autoregressive pro
beeing estimated as deterministic by the false near
neighbor method@22#. In order to determine if the wavering
product suffers from the same problem a third-order auto
gressive process was generated, satisfying the equation

x~ t !51.59x~ t21!21.2x~ t22!10.6x~ t23!1u~ t !,

with a white-noise sequenceu(t). Figure 3 shows the con
vergence of the wavering product for this process. Beca
the computing time grows rapidly with the embedding d
mension, the wavering product was restricted to maxim
dimensiond59 here. However, the wavering product see
to converge regularly against zero for high embedding
mensions, as one would expect, since a stochastic proce
infinite dimensional in phase space. Obviously the waver
product is not ‘‘fooled’’ by a stationary random process
that smoothness contrary to the method of nearest neighb

FIG. 9. Lyapunov exponent spectrum versus the Gaussian n
that is imposed on the time series.
TABLE II. Experimental parameters and discovered dimensions for all the observed regimes.n assigns
the external drive frequency,p0 is the pressure in the discharge tube,I 0 is the direct current portion of the
discharge current, anda represents the modulation amplitude.

Dynamic regime n ~kHz! p0 ~torr! I 0 ~mA! a D2 DKY

Periodic 3.113 1.7 10.0 0.05 0.9560.05
Quasiperiodic 4.063 1.7 10.0 0.04 3.0560.05
Chaotic 5.020 1.7 15.0 0.05 3.6060.05 5.56
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55 6471OPTIMAL RECONSTRUCTION OF ATTRACTORS FROM . . .
III. THE LYAPUNOV EXPONENT SPECTRUM

A Lyapunov exponent spectrum is an important quan
to classify and quantify dynamical systems. The decis
whether a time series is periodic, quasiperiodic, or cha
can be made by calculating a Lyapunov exponent spect
because it is characteristic for special dynamical sta
Lyapunov exponents state how the phase flow mapp
transforms an infinitesimale sphere on the attractor into a
ellipse in the average of time:

lk5 lim
t→`

1

t E0
t

lngkdt.

Thegk are the eigenvalues of the linearized phase flow m
ping.

A. Algorithm for the calculation of Lyapunov exponents

The algorithm to calculate Lyapunov exponents presen
here corresponds in its essential features to the method
veloped by Sano and Sawada@9#. Moreover, the local tan-
gent mappingsTi at positioni of the phase flow are approx
mated by the method of least squares. This happens in
following manner. For a reference pointxW i then next neigh-
bors on the attractor are determined with respect to the
clidian distance. To prevent the next-neighbor area from
panding so much that a linear approximation is not poss

FIG. 10. Poincare´ section through the periodic attractor.

FIG. 11. Poincare´ section through the three-frequency quas
eriodic attractor.
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an e sphere aroundxW i can be given. Thus only the nex
neighbors within thee sphere are taken into account. Th
tangent mappingTi is approximated into a matrixAi ,m by the
method of least squares@9#. m assigns the number of tim
steps for the linear mapping. Applying the mappingp times
on a coordinate base results in a product matrix) j5 i

i1pAj ,m.
This sequence of linear mappings allows the coordinate a
to converge into the direction of the biggest Lyapunov exp
nent enforced by the dynamics of the system. It is theref
necessary to reorthonormalize the coordinate base. Sano
Sawada propose a Gram-Schmid reorthonormalization
cedure@23#. The algorithm used here decomposes the ma
Aj ,m into an orthogonal and an upper triangular matrix w
positive diagonal elements@8,24# as

A1,m15Q1,mR1,m,

A2,mA1,m15Q2,mR2,mR1,m,

•

•

•

)
j51

p

Aj ,m5Qp,m)
j51

p

Rj ,m.

Hence the tangent mappingAj ,m is represented by an ortho
normal system that is rotated byQj21,m against the canonica
coordinate base 1= at the beginning of the sequence. Becau
this orthonormal system nearly corresponds to the princ

-

FIG. 12. Poincare´ section through the chaotic attractor.

FIG. 13. Autocorrelation function of the periodic attractor.
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6472 55W.-D. SPONHEIMER AND C. WILKE
axes system of the tangent mappingAj ,m, the Lyapunov ex-
ponents can be calculated from the diagonal elements o
upper triangular matrix with good approximation:

l i5
1

pmDt (
j51

p

ln~Rj ,m! i i .

The procedure described above begins at several rand
partitioned positions on the attractor to include each par
the attractor and to guarantee a good spatial average o
Lyapunov exponents. The firstq tangent mappings were no
taken into account for the calculations because the arbit
base at the start of the procedure takes some time to trai
the principal axes system. During this time the algorith
would deliver inaccurate results.

B. Optimization and test of the algorithm

The reconstructed attractorxW i represents the phase flow o
a dynamical system in discrete time steps. It depends on
choice of the reconstruction parameters embedding dim
sionde and delay timet whether the attractor approximate
the system well. In addition, the density and the amoun
information that the reconstructed attractor contains ab
the phase flow are given by the sampling rate, the precis
and the total amount of data of the obtained time series
was found that time series with high sampling frequenc
were needed for a reliable determination of negat
Lyapunov exponents~at least 100 points per orbit! @25#,

FIG. 14. Autocorrelation function of the quasiperiodic attract

FIG. 15. Autocorrelation function of the chaotic attractor.
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whereas for the determination of positive Lyapunov exp
nents attractors with many orbits are required~at least 100
orbits!. To fulfill both requirements large amounts of data a
needed. The used time series usually contained of 80
data and had a precision of 12 bits.

The input parameters of the above described algorit
will now be optimized and then the algorithm will be teste
on a Lorenz system. The algorithm contains many para
eters. The parameter space has to be reduced in a sen
manner so that the algorithm delivers optimal results. F
that purpose an area in parameter space is selected whe
LES remains constant. The parameter dependence of
LES is shown here for a Lorenz system,

ẋ5s~y2x!,

ẏ5cx2y2xz,

ż52bz1xy,

with s516,b54.0, andR545.92~Figs. 4–9!. Constant pa-
rameters were set as follows: evolution timeDtevol50.008,
number of pointsN580 000, step widthdt50.002 ~which
corresponds to about 250 points per orbit!, number of refer-
ence pointsNref53500, and number of next neighbo
n5160.N has to be proportional ton whenN is varied to
keep the radius of the next-neighbor sphere around a re
ence point nearly constant.

. FIG. 16. Power spectrum of the periodic attractor.

FIG. 17. Power spectrum of the quasiperiodic attractor.
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55 6473OPTIMAL RECONSTRUCTION OF ATTRACTORS FROM . . .
Convergence could be achieved for all varied paramet
Figure 4 shows a convergence of the LES for evolution tim
Dtevol,0.01 s, corresponding to 50 points per orbit. Hen
step widths less than 0.01 s must be taken. For experim
tally obtained time series the step width is given by the
verse sampling frequencydt5n21. Because of a better sta
tistics the LES converges for large values ofN, Nref , and
n, as Figs. 5–7 show. Butn may not become too large
otherwise, thee sphere exceeds the range for a linear
proximation of theFW map. The influence of the step width o
the LES can be neglected if only step widths within t
convergent range of the evolution time are considered~Fig.
8!. Against that there is a strong dependence of the LES
the noise level, as demonstrated in Fig. 9. There is Gaus
noise superimposed on the Lorenz attractor. The noise l
relative to the horizontal extent of the attractor is display
on the abscissa of Fig. 9. As can be recognized from Fig
the algorithm delivers reasonable results until the noise le
gets across 2%. Hence the noise in the experimental
series has to be reduced at least under this level. Fur
investigations on the influence of interactive noise to
LES are made in@26#.

The Lyapunov exponents of the Lorenz system that
calculated in the convergent range of all parameters are c
pared with published data@25# in Table I. Error bars refer to
the fluctuations of the Lyapunov exponents within the co
vergence region. It is shown that the calculated Lyapun
exponents are in good agreement with the theoretical va

FIG. 18. Power spectrum of the chaotic attractor.

FIG. 19. Lyapunov exponent spectrum for the periodic syste
s.
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within the error bars, with exception of the negative on
Sinceil2i is huge againstl1, the next neighbors contrac
much faster in thel2 direction as they expand in thel1

direction. If a part of the next neighbors contracts in t
l2 direction under the noise level or goes down under
data precision,l2 will be systematically overestimated. Th
LES converges on different regions in parameter space
each system. These regions have to be found for each sy
individually.

IV. ANALYSIS OF EXPERIMENTAL TIME SERIES

Time series that were obtained by sampling the discha
current of a neon glow discharge with a 500-kHz sampl
frequency were analyzed. The experimental setup is
scribed in detail in@27#. Various dynamical regimes can b
set there by varying the frequency that drives the discha
The following analysis refers to a periodic, a quasiperiod
and a chaotic time series, which were sampled at experim
tal conditions, as given in Table II.

As a first step the noise contained in the time series ha
be reduced. This could be realized by a method that inter
lates a time series through cubic splines and then aver
over them. This procedure is applied in@19# as well. Then a
Poincare´ section, a Fourier spectrum, and an autocorrelat
function were derived from the low-noise time series to cl
sify their dynamics~Figs. 10–18!. Moreover, by the calcula-

.

FIG. 20. Lyapunov exponent spectrum for the quasiperiodic s
tem.

FIG. 21. Lyapunov exponent spectrum for the chaotic syste
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6474 55W.-D. SPONHEIMER AND C. WILKE
tion of the correlation dimensionD2, which can easily be
done with the Grassberger-Procaccia algorithm@28# ~delay
time51/3T, Table II!, dynamical regimes of the time serie
can now be determined. Hence the first time series co
sponds to a one-period, the second time series correspon
a three-torus~quasiperiodic!, and the third is chaotic. This
could be verified with a LES, which was obtained by app
ing the above-described algorithm onto the time series.

Figures 19–21 show the LES against the evolution tim
The LES for the three time series is represented schem
cally as ~0,2,2,2), ~0,0,0,2,2) and ~1,1,0,2,2,2)
within the error bars, corresponding to a periodic, a qua
periodic and a chaotic state. This scheme refers to the
vergence region of the LES for evolution time
Dtevol,1022 ms. The errors of the LES are estimated by t
fluctuations of the convergence niveaus. The innerm
Lyapunov exponents even converge untilDtevol50.04 ms.
For a more precise determination of the Lyapunov expone
smaller evolution times are needed. This would requ
higher sampling rates, which could not be realized exp
mentally.

In Figs. 22–24 the wavering products for the three tim
series are shown. They depend on the parameters delay
t and embedding dimension of the attractorde . In the case
of the periodic and the quasiperiodic system converge
against zero can clearly be recognized since the embed
dimensiond54 andd55. The corresponding delay time
were set tot50.082 ms andt50.074 ms. Yet in the case o
the chaotic system the convergence is more indistinct and

FIG. 22. Wavering product for the periodic system.

FIG. 23. Wavering product for the quasiperiodic system.
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convergence is situated above zero. As demonstrated in
II B, the insufficient convergence is related to a remaini
part of noise contained in the time series that could not
reduced further. This noise can be seen in the Fourier s
trum of the chaotic time series as well~Fig. 18!. On the other
hand, the application of the noise reduction algorithm imp
cates the risk of deforming chaotic trajectories and theref
alters the dynamics of the system essentially, as state
@19#. Thus a noise level less than 2% was tolerated so
reliable Lyapunov exponents could be determined. Beca
of the insufficient convergence of the wavering product,
chaotic attractor that is reconstructed with paramet
de56 and t50.062 ms is possibly embedded too hig
Hence the LES would containde2dr additional false
Lyapunov exponents besidesdr true Lyapunov exponents
dr represents the real embedding dimension of the attra
corresponding to the system’s number of degrees of freed
If an embedding dimensionde54 is considered to be a
sufficient for the chaotic system and the second and fou
Lyapunov exponent is deleted from the LES, the Lyapun
dimension is equivalent to the correlation dimension with
the error bars.

V. CONCLUSION

An algorithm for the calculation of LES from time serie
has been presented that allows for the determination of n
tive Lyapunov exponents. The algorithm has been tested
Lorenz system and has been optimized with respect to
parameters. For sensible parameter settings good agree
could be achieved between the results of the algorithm
literature values of the model system. Then with the alg
rithm a LES has been found from the discrete discharge
rent of a periodically excited neon glow discharge. The
fore, an attractor had to be reconstructed from
experimental time series with its reconstruction paramet
embedding dimension and delay time determined by the
vering product. Chaotic, periodic, and three-frequency q
siperiodic time behavior has been proved to be dependen
the external drive frequency. These results could be c
firmed by further analyses with the Poincare´ section, the
Fourier spectrum, the correlation dimension, and the auto
relation function. Because of the sensitivity of the LES alg
rithm and especially the wavering product to noise, the no
level of the time series under analysis had to be reduced

FIG. 24. Wavering product for the chaotic system.
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the case of the chaotic time series the noise level could o
be reduced down to 2% because by a further noise reduc
with the mentioned algorithm a change of the dynamic pr
erties of the attractor seemed to be very likely. Though
noise level of 2% was not problematic for the LES alg
rithm, it probably let the wavering product overestimate t
embedding dimension, as was assumed by a compariso
tween the Lyapunov dimension and correlation dimensi
Together with a good noise reduction procedure, the L
s.

J
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to
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rd
ly
on
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algorithm presented in this work provides an efficie
method to classify and quantify dynamical systems from
perimental time series.
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